SYNTHESIS OF HOMOCHIRAL ACYCLIC MONO- AND BIS($\alpha-A M I N O$ ACID)S WITH OLIGO(OXYETHYLENE) CHAINS

Martin BĚLOHRADSKÝ ${ }^{1}$, Luděk RIDVAN and Jiří ZÁvADA ${ }^{2, *}$
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; e-mail: ${ }^{1}$ martinb@uochb.cas.cz, ${ }^{2}$ zavada@uochb.cas.cz

Received April 23, 2003
Accepted June 3, 2003

Synthesis of homochiral α-amino acids $\mathbf{3 a - 3 e}$ and bis(α-amino acid)s 4a-4e via $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ catalyzed ring-opening of methyl (S)-1-[(benzyloxy)carbonyl]aziridine-2-carboxylate (7) with oligo(ethylene glycol)s and subsequent acid hydrolysis is reported.
Keywords: Amino acids; Oligo(ethylene glycol)s, Aziridines; Nucleophilic ring-opening reaction; Podands; Crown ethers.

Recently ${ }^{1,2}$, we have prepared macrocyclic amino acid $\mathbf{1}$ and bis(amino acid) $\mathbf{2}$, which are "crowned" at the glycine α-carbon with the methyleneoligo(oxyethylene)oxymethylene chain, and investigated their complexation and self-assembling properties. As an extension of this study, we wish to provide synthetic access also to the acyclic analogues $\mathbf{3}$ and $\mathbf{4}$ anticipating that the well-known metal-ion-ligating as well as hydrogen-bonding abilities of the incorporated straight-chain oligo(oxyethylene) moiety may endow al so the target compounds with some unusual (podand) ${ }^{3}$ properties.
As it is pointed out elsewhere ${ }^{4,5}$, there is a tremendous level of interest in the de novo design and synthesis of novel unnatural amino acids with specific properties for the purposes of imparting enzyme-inhibitory, antimetabolite and protease resistance-inducing properties to peptides and their mimetics. As a consequence, the devel opment of versatile methodologies for their preparation in optically pure form has emerged as a highly significant and challenging endeavor. For the homologous series of the homochiral amino acids (S)-3a-3e and (S,S)-4a-4e, this synthetic task has now been accomplished.

RESULTS AND DISCUSSION

In contrast to the macrocyclic amino acids $\mathbf{1}$ and $\mathbf{2}$ pertaining retrosynthetically to 2,2-bis(hydroxymethyl)glycine 5, the acyclic analogues $\mathbf{3 a - 3 e}$ and $\mathbf{4 a - 4 e}$ refer to the 2-hydroxymethylglycine (serine) homologue 6 (Scheme 1). As the most convenient synthon of $\mathbf{6}$, we have chosen the activated derivative of (S)-aziridine-2-carboxylic acid 7, which is easily accessible from the homochiral (S)-serine.

1

5

(S)-6

2

(S,S)-4a-4e

$\mathbf{3 , 4}$	n
\mathbf{a}	0
\mathbf{b}	1
\mathbf{c}	2
\mathbf{d}	3
\mathbf{e}	4

Scheme 1
Nucleophilic reactivity of aziridine $\mathbf{7}$ has been amply demonstrated ${ }^{6-9}$. Surprisingly enough, the reaction with free oligo(ethylene glycol)s has not been as yet reported. As we have now found, the nucleophilic ring-opening reaction of the aziridine derivative proceeds smoothly under $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ catalysis, yielding a mixture of the corresponding protected amino acid 8a-8e and bis(amino acid) 9a-9e, respectively, in proportions depending on the stoichiometry employed. A simple chromatographic separation followed by acid hydrolysis afforded the target deprotected amino acid 3a-3e and bis(amino acid) 4a-4e (Scheme 2). A straightforward access to novel enantiomerically uniform (S)-serine analogues is thus provided.

(S) $-7\left(\mathrm{Z}=\mathrm{PhCH}_{2} \mathrm{OCO}\right)$

(S)-8a-8e (Z = $\left.\mathrm{PhCH}_{2} \mathrm{OCO}\right)$
\downarrow
(S)-3a-3e-HCI

$(S, S)-9 a-9 e\left(Z=\right.$ PhCH $\left._{2} O C O\right)$

(S,S)-4a-4e•2HCl

Scheme 2

EXPERIMENTAL

${ }^{1} \mathrm{H}$ NMR spectra were measured on a FT NMR spectrometer Varian Unity 200 (200 MHz , $20^{\circ} \mathrm{C}$) in CDCl_{3} (with TMS as internal standard) and/or in $\mathrm{D}_{2} \mathrm{O}$ (referenced to HDO signal at 4.80 ppm). Chemical shifts are given in ppm (δ-scale), coupling constants (J) in Hz . FAB MS spectra were recorded with a ZAB-EQ VG analytical instrument using a mixture of glycerol-thioglycerol matrix. Analytical samples were dried at $60^{\circ} \mathrm{C} / 5 \mathrm{kPa}$ for 24 h . TLC chromatography was performed on Kieselgel GF254 using the Dragendorff spraying reagent. Commercial oligo(ethylene glycol)s (Aldrich, Fluka) were distilled and kept over molecular sieves 3 A . Other reagents and solvents were purchased from Fluka and Aldrich and were used without further purification. Methyl (S)-1-[(benzyloxy)carbonyl]aziridine-2-carboxylate (7) was prepared by a modification of the earlier procedure ${ }^{6}$. Values of $[\alpha]_{D}$ are given in $10^{-1} \operatorname{deg} \mathrm{~cm}^{2} \mathrm{~g}^{-1}$.

Methyl (S)-1-[(Benzyloxy)carbonyl]aziridine-2-carboxylate (7)
Methyl (S)-1-tritylaziridine-2-carboxylate ${ }^{6}(6.86 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$ and $\mathrm{CHCl}_{3}(20 \mathrm{ml})$. Trifluoroacetic acid ($28 \mathrm{ml}, 200 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and the mixture was allowed to stand at $0{ }^{\circ} \mathrm{C}$ for 2 h . The solvents were evaporated under reduced pressure and the residue was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ and triethyl amine (7 ml). The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of benzyl chloroformate (3.1 ml ,
$22 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ was added dropwise. The reaction mixture was allowed to stand at room temperature for 16 h and was then washed with 10% aqueous citric acid, water, saturated aqueous NaHCO_{3}, and brine. The organic layer was dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and the solvent was removed by evaporation. The pure product was obtained by chromatography (ethyl acetate/petroleum ether $1: 3$) as oil ($4.1 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 7.35$ (m, 5 H); 5.15 (s, 2 H); 3.71 (s, 3 H); 3.11 (dd, $1 \mathrm{H}, \mathrm{J}=3.4$ and 5.5); 2.60 (dd, $1 \mathrm{H}, \mathrm{J}=1.2$ and 3.4); 2.49 (dd, $1 \mathrm{H}, \mathrm{J}=1.2$ and 5.5). $[\alpha]_{D}-46.4$ (c 1, MeOH); ref. ${ }^{6}$: $[\alpha]_{D}-47.3$ (c 0.25).

Reactions of 7 with Oligo(ethylene glycol)s. General Procedure

Methyl (S)-1-[(benzyloxy)carbonyl]aziridine-2-carboxylate (7; 9 mmol) and an appropriate oligo(ethylene glycol) (6 mmol) was dissolved in $\mathrm{CHCl}_{3}(4 \mathrm{ml})$ and treated with 10% solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CHCl}_{3}(2 \mathrm{ml})$. The mixture was allowed to stand at room temperature for 20 h . After dilution with $\mathrm{CHCl}_{3}(30 \mathrm{ml})$, the mixture was shaken with $10 \% \mathrm{NaHCO}_{3}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The products were separated by column chromatography using these eluents: EtOAc/petroleum ether from 1:1 to 3:1 (A), EtOAc/petroleum ether from 3:1 mixture to EtOAc only (B), or $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{C})$.

Methyl (S)-2-\{(benzyloxy)carbonyl]amino\}6-hydroxy-4-oxahexanoate (8a; $n=0$). Prepared from 2 and ethylene glycol. Isolated chromatographically using eluent B; oil ($0.74 \mathrm{~g}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $7.36(\mathrm{~m}, 5 \mathrm{H}) ; 5.81(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.5) ; 5.13(\mathrm{~s}, 2 \mathrm{H}) ; 4.53(\mathrm{dt}$, $1 \mathrm{H}, \mathrm{J}=8.5$ and 3.4); 3.92 (dd, $1 \mathrm{H}, \mathrm{J}=9.8$ and 3.4); 3.77 (s, 3 H); 3.74-3.64 (m, 3 H); 3.59-3.51 (m, 2 H). FAB MS, m/z: 298 ($\mathrm{MH}^{+}, 41$), 254 (100), 164 (29). FAB HR MS: for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{6}\right]^{+}$calculated 298.1291, found 298.1282. $[\alpha]_{\mathrm{D}}-11.5$ (c 1, MeOH).

Dimethyl (S,S)-2,9-bis\{(benzyloxy)carbonyl]amino\}-4,7-dioxadecanedioate (9a; $n=0$). Prepared from 2 and ethylene glycol. Isolated chromatographically using eluent A; oil ($1.29 \mathrm{~g}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): 7.40-7.24 (m, 10 H); 5.80 (br d, $2 \mathrm{H}, \mathrm{J}=8.5$); $5.12(\mathrm{~s}, 4 \mathrm{H}) ; 4.48$ (dt, $2 \mathrm{H}, \mathrm{J}=8.5$ and 3.4); 3.91 (dd, $2 \mathrm{H}, \mathrm{J}=9.8$ and 3.4); 3.72 (s, 6 H); 3.70-3.50 (m, 6 H). FAB MS, m/z: $533\left(\mathrm{MH}^{+}, 45\right), 489$ (92), 399 (100). FAB HR MS: for $\left[\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{10}\right]^{+}$calculated 533.2135 , found 533.2144. $[\alpha]_{D}-6.2$ (c 1, MeOH).

M ethyl (S)-2-\{(benzyloxy)carbonyl]amino\}9-hydroxy-4,7-dioxanonanoate ($\mathbf{8 b} ; \mathrm{n}=1$). Prepared from 2 and diethylene glycol. Isolated chromatographically using eluent B; oil ($0.70 \mathrm{~g}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $7.36(\mathrm{~m}, 5 \mathrm{H}) ; 6.03$ (br d, $1 \mathrm{H}, \mathrm{J}=8.6$); 5.14 (s, 2 H); 4.50 ($\mathrm{dt}, 1 \mathrm{H}$, $\mathrm{J}=8.6$ and 3.1); 4.01 (dd, $1 \mathrm{H}, \mathrm{J}=10.1$ and 3.1); $3.77(\mathrm{~s}, 3 \mathrm{H}) ; 3.76-3.56(\mathrm{~m}, 9 \mathrm{H})$. FAB MS, $\mathrm{m} / \mathrm{z}: 342\left(\mathrm{MH}^{+}, 36\right), 298(100), 208(41)$. FAB HR MS: for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{7}\right]^{+}$calculated 342.1553, found 342.1559. $[\alpha]_{D}-7.9$ (c 1, MeOH).

Dimethyl (S,S)-2,12-bis\{(benzyloxy)carbonyl]amino\}-4,7,10-trioxatridecanedioate (9b; $\mathrm{n}=1$). Prepared from 2 and diethylene glycol. Isolated chromatographically using eluent A; oil ($1.4 \mathrm{~g}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $7.34(\mathrm{~m}, 10 \mathrm{H}$); 5.88 (br d, $2 \mathrm{H}, \mathrm{J}=8.6$); $5.12(\mathrm{~s}$, 4 H); 4.47 (dt, $2 \mathrm{H}, \mathrm{J}=8.6$ and 3.4); 3.92 (dd, $2 \mathrm{H}, \mathrm{J}=9.8$ and 3.4); 3.73 (s, 6 H); 3.70-3.50 ($\mathrm{m}, 10 \mathrm{H}$). FAB MS, m/z: $577\left(\mathrm{MH}^{+}, 28\right), 533$ (100), 443 (45). FAB HR M S: for $\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{11}\right]^{+}$ calculated 577.2397, found 577.2404. [$\alpha]_{D}-7.9$ (c 1, MeOH).

M ethyl (S)-2-\{(benzyloxy)carbonyl]amino\}-12-hydroxy-4,7,10-trioxadodecanoate (8c; n = 2). Prepared from 2 and triethylene glycol. Isolated chromatographically using eluent C ; oil ($0.90 \mathrm{~g}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $7.36(\mathrm{~m}, 5 \mathrm{H}) ; 6.55$ (br d, $1 \mathrm{H}, \mathrm{J}=8.8$); 5.13 (s, 2 H); 4.50 (dt, $1 \mathrm{H}, \mathrm{J}=8.8$ and 3.4); 3.98 (dd, $1 \mathrm{H}, \mathrm{J}=9.5$ and 3.4); 3.76 (s, 3 H); 3.75-3.54 $(\mathrm{m}, 13 \mathrm{H})$. FAB MS, m/z: $386\left(\mathrm{MH}^{+}, 36\right), 342(100), 252(62)$. FAB HR MS: for $\left[\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{8}\right]^{+}$ calculated 386.1815, found 342.1822. [$\alpha]_{D}-5.9$ (c 1, MeOH).

Dimethyl (S,S)-2,15-bis\{(benzyloxy)carbonyl]amino\}-4,7,10,13-tetraoxahexadecanedioate (9c; $\mathrm{n}=2$). Prepared from 2 and triethylene glycol. Isolated chromatographically using eluent B; oil ($1.4 \mathrm{~g}, 38 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$): $7.36(\mathrm{~m}, 10 \mathrm{H}) ; 5.91$ (br d, $2 \mathrm{H}, \mathrm{J}=8.8$); 5.12 (s, 4 H); 4.47 (dt, $2 \mathrm{H}, \mathrm{J}=8.8$ and 3.4); 3.93 (dd, $2 \mathrm{H}, \mathrm{J}=9.8$ and 3.4); 3.74 (s, 6 H); 3.73 (dd, $2 \mathrm{H}, \mathrm{J}=9.8$ and 3.4); 3.75-3.50 (m, 12 H). FAB MS, m/z: 621 ($\mathrm{MH}^{+}, 35$), 577 (100), 487 (66). FAB HR MS: for $\left[\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{12}\right]^{+}$calculated 621.2660, found 621.2669. $[\alpha]_{D}-7.6$ (c 1, MeOH).

M ethyl (S)-2-\{(benzyloxy)carbonyl]amino\}-15-hydroxy-4,7,10,13-tetraoxapentadecanoate (8d; $\mathrm{n}=3$). Prepared from 2 and tetraethylene glycol. Isolated chromatographically using eluent C; oil ($0.85 \mathrm{~g}, 33 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): 7.36 (m, 5 H); 6.30 (br d, $1 \mathrm{H}, \mathrm{J}=8.6$); 5.13 (s, 2 H); $4.48(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=8.6$ and 3.4$) ; 3.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.8$ and 3.4$) ; 3.76(\mathrm{~s}, 3 \mathrm{H})$; 3.76-3.52 (m, 17 H$)$. FAB MS, m/z: $430\left(\mathrm{MH}^{+}, 33\right), 386$ (100), 296 (24). FAB HR MS: for $\left[\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{9}\right]^{+}$cal culated 430.2077, found 430.2082. $[\alpha]_{\mathrm{D}}-6.4$ (c 1, MeOH).

Dimethyl (S,S)-2,18-bis\{(benzyloxy)carbonyl]amino\}4,7,10,13,16-pentaoxanonadecanedioate (9d; $\mathrm{n}=3$). Prepared from 2 and tetraethylene glycol. Isolated chromatographically using eluent C; oil ($1.1 \mathrm{~g}, 28 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$): $7.36(\mathrm{~m}, 10 \mathrm{H}) ; 5.90(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{J}=$ 8.8); $5.12(\mathrm{~s}, 4 \mathrm{H}) ; 4.47(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=8.8$ and 3.4$) ; 3.94(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.8$ and 3.4$) ; 3.75(\mathrm{~s}$, $6 \mathrm{H}) ; 3.71$ (dd, $2 \mathrm{H}, \mathrm{J}=9.8$ and 3.4); 3.78-3.63 (m, 16 H). FAB MS, m/z: $665\left(\mathrm{MH}^{+}, 30\right), 621$ (100), 531 (54). FAB HR MS: for $\left[\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{13}\right]^{+}$calculated 665.2922, found 665.2918. $[\alpha]_{D}-6.3$ (c 1, MeOH).

M ethyl (S)-2-\{(benzyloxy)carbonyl]amino\}-18-hydroxy-4,7,10,13,16-pentaoxaoctadecanoate (8e; $\mathrm{n}=4)$. Prepared from 2 and pentaethylene glycol. Isolated chromatographically using eluent C; oil (1.0 g, 35\%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): 7.36 (m, 5 H); 6.07 (br d, $1 \mathrm{H}, \mathrm{J}=8.4$); 5.13 (s, 2 H); $4.48(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=8.4$ and 3.6); $3.96(\mathrm{dd}, 1 \mathrm{H}$, J $=9.8$ and 3.6); $3.76(\mathrm{~s}, 3 \mathrm{H})$; $3.75-3.56$ (m, 21 H). FAB MS, m/z: $474\left(\mathrm{MH}^{+}, 38\right), 430$ (100), 252 (28). FAB HR MS: for $\left[\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{NO}_{8}\right]^{+}$calculated 474.2339, found 474.2332. $[\alpha]_{\mathrm{D}}-5.4$ (c 1, MeOH).

Dimethyl (S,S)-2,21-bis\{(benzyloxy)carbonyl]amino\}-4,7,10,13,16,19-hexaoxadocosanedioate (9 e; $\mathrm{n}=4$). Prepared from 2 and pentaethylene glycol. Isolated chromatographically using eluent C; oil ($1.2 \mathrm{~g}, 28 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$): $7.36(\mathrm{~m}, 10 \mathrm{H}) ; 5.91(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{J}=$ 8.6); $5.12(\mathrm{~s}, 4 \mathrm{H}) ; 4.47(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=8.6$ and 3.3$) ; 3.95(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.6$ and 3.3); $3.75(\mathrm{~s}$, 6 H); 3.72 (dd, $2 \mathrm{H}, \mathrm{J}=9.6$ and 3.3); 3.58 (m, 20 H). FAB MS, m/z: 709 ($\mathrm{MH}^{+}, 32$), 665 (100), 575 (62). FAB HR MS: for $\left[\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{14}\right]^{+}$calculated 709.3183, found 709.3175. $[\alpha]_{D}-5.5$ (c $1, \mathrm{MeOH}$).

Hydrolysis of Protected Amino Acids 8a-8e and $\mathbf{9 a - 9 e}$. General Procedure

An appropriate amino acid (2 mmol) was refluxed in aqueous 6 m HCl under nitrogen for 16 h . After cooling, charcoal was added; the mixture was filtered and evaporated. The yields of resulting hydrochlorides of $\mathbf{3 a - 3 e}$ and dihydrochlorides of $\mathbf{4 a} \mathbf{- 4 e}$ were quantitative.
(S)-2-Amino-6-hydroxy-4-oxahexanoic acid hydrochloride ($\mathbf{3 a}$; $n=0$). Obtained from $\mathbf{8 a}$ as a hygroscopic oil. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}$): 4.26 (dd, $1 \mathrm{H}, \mathrm{J}=4.8$ and 3.4); 4.04 (dd, $1 \mathrm{H}, \mathrm{J}=$ 11.0 and 4.8); 3.95 (dd, $1 \mathrm{H}, \mathrm{J}=11.0$ and 3.4); $3.70(\mathrm{~m}, 4 \mathrm{H})$. $\mathrm{FAB} \mathrm{MS}, \mathrm{m} / \mathrm{z}: 150\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{NO}_{4}\right]^{+}$calculated 150.0766, found 150.0757.
(S,S)-2,9-Diamino-4,7-dioxadecanedioic acid dihydrochloride (4a; $n=0$). Obtained from 9a as a hygroscopic glassy substance. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}$): 4.25 (dd, $2 \mathrm{H}, \mathrm{J}=4.6$ and 3.4); 4.05 (dd, $2 \mathrm{H}, \mathrm{J}=11.0$ and 4.6); 3.94 (dd, $2 \mathrm{H}, \mathrm{J}=11.0$ and 3.4); 3.74 (m, 4 H). FAB MS, m/z: $237\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6}\right]^{+}$calculated 237.1087, found 237.1080.
(S)-2-Amino-4,7-dioxanonanoic acid hydrochloride ($\mathbf{3} \mathbf{b} ; \mathrm{n}=1$). Obtained from $\mathbf{8 b}$ as a hygroscopic oil. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}$): 4.23 (dd, $1 \mathrm{H}, \mathrm{J}=4.9$ and 3.7); $4.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.0$ and 4.9); 3.95 (dd, $1 \mathrm{H}, \mathrm{J}=11.0$ and 3.7); 3.78-3.62 (m, 8 H). FAB MS, m/z: 194 ($\mathrm{MH}^{+}, 100$). FAB HR MS: for $\left[\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{5}\right]^{+}$calculated 194.1028, found 194.1033.
(S,S)-2,12-Diamino-4,7,10-trioxatridecanedioic acid dihydrochloride (4b; $n=1$). Obtained from 9b as a hygroscopic glassy substance. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right): 4.26$ (dd, $2 \mathrm{H}, \mathrm{J}=4.6$ and 3.4); 4.05 (dd, $2 \mathrm{H}, \mathrm{J}=11.0$ and 4.6); 3.94 (dd, $2 \mathrm{H}, \mathrm{J}=11.0$ and 3.4); 3.82-3.64 (m, 8 H). FAB MS, m/z: $281\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+}$calculated 281.1349, found 281.1352.
(S)-2-Amino-12-hydroxy-4,7,10-trioxadodecanoic acid hydrochloride (3c; $\mathrm{n}=2$). Obtained from 8c as a hygroscopic oil. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}$): 4.25 (dd, $1 \mathrm{H}, \mathrm{J}=4.7$ and 3.4); 4.04 (dd, $1 \mathrm{H}, \mathrm{J}=11.0$ and 4.7); 3.97 (dd, $1 \mathrm{H}, \mathrm{J}=11.0$ and 3.4); 3.78-3.62 (m, 12 H). FAB MS, m/z: $238\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NO}_{6}\right]^{+}$calculated 238.1290, found 238.1299.
(S,S)-2,15-Diamino-4,7,10,13-tetraoxahexadecanedioic acid dihydrochloride (4c; $n=2$). Obtained from 9c as a hygroscopic glassy substance. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}$): 4.24 (dd, 2 H , $\mathrm{J}=4.7$ and 3.4); 4.05 (dd, $2 \mathrm{H}, \mathrm{J}=11.0$ and 4.7); $3.95(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=11.0$ and 3.4); 3.78-3.68 $(\mathrm{m}, 12 \mathrm{H})$. FAB MS, m/z: $325\left(\mathrm{MH}^{+}, 100\right)$. FAB MS HR: for $\left[\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}\right]^{+}$calculated 325.1611, found 325.1614 .
(S)-2-Amino-15-hydroxy-4,7,10,13-tetraoxapentadecanoic acid hydrochloride (3d; n = 3). Obtained from 8d as a hygroscopic oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right): 4.25$ (dd, $1 \mathrm{H}, \mathrm{J}=4.9$ and 3.7); 4.05 (dd, $1 \mathrm{H}, \mathrm{J}=11.0$ and 4.9); 3.96 (dd, $1 \mathrm{H}, \mathrm{J}=11.0$ and 3.7); 3.79-3.62 (m, 16 H). FAB MS, m/z: $282\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{7}\right]^{+}$calculated 282.1553, found 282.1557.
(S,S)-2,18-Diamino-4,7,10,13,16-pentaoxanonadecanedioic acid dihydrochloride (4d; $n=3$). Obtained from 9d as a hygroscopic glassy substance. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}$): 4.24 (dd, $2 \mathrm{H}, \mathrm{J}=4.6$ and 3.7); 4.05 (dd, $2 \mathrm{H}, \mathrm{J}=11.3$ and 4.6); 3.95 (dd, $2 \mathrm{H}, \mathrm{J}=11.3$ and 3.7); 3.88-3.64 (m, 16 H$)$. FAB MS, m/z: $369\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{9}\right]^{+}$calculated 369.1873, found 369.1869.
(S)-2-Amino-18-hydroxy-4,7,10,13,16-pentaoxaoctadecanoic acid hydrochloride (3e; $\mathrm{n}=4$). Obtained from 8 e as a hygroscopic oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right): 4.25$ (dd, $1 \mathrm{H}, \mathrm{J}=4.9$ and 3.7); 4.05 (dd, $1 \mathrm{H}, \mathrm{J}=11.3$ and 4.9); 3.96 (dd, $1 \mathrm{H}, \mathrm{J}=11.3$ and 3.7); 3.86-3.62 (m, 20 H). FAB MS, m/z: $326\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{8}\right]^{+}$calculated 326.1815, found 326.1822.
(S,S)-2,21-Diamino-4,7,10,13,16,19-hexaoxadocosanedioic acid dihydrochloride (4e; $\mathrm{n}=4$). Obtained from 9e as a hygroscopic glassy substance. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}$): 4.25 (dd, 2 H , $\mathrm{J}=4.9$ and 3.7); 4.05 (dd, $2 \mathrm{H}, \mathrm{J}=11.0$ and 4.9); $3.96(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=11.0$ and 3.7); 3.87-3.63 $(\mathrm{m}, 20 \mathrm{H})$. FAB MS, m/z: $413\left(\mathrm{MH}^{+}, 100\right)$. FAB HR MS: for $\left[\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{10}\right]^{+}$calculated 413.2135, found 413.2142.

This work was performed within the framework of the research project K4050111. The financial support of the Grant Agency of the Czech Republic (grants No. 203/00/0137 and No. 203/03/0087) is warmly acknowledged.

REFERENCES

1. Bělohradský M., Císařová I., Holý P., Pastor J., Závada J.: Tetrahedron 2002, 58, 8811.
2. Bělohradský M., Buděšínský M., Císařová I., Dekoj V., Holý P., Závada J.: Tetrahedron 2003, 59, submitted.
3. Vőgtle F., Weber E.: Angew. Chem., Int. Ed. Engl. 1979, 18, 753.
4. Williams R. M.: Aldrichim. Acta 1992, 25, 11.
5. Duthaler R. O.: Tetrahedron 1994, 50, 1539.
6. Larsson U., Carlson R.: Acta Chem. Scand. 1994, 48, 511.
7. Tanner D.: Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
8. Nakajima K., Takai F., Tanaka T., Okawa K.: Bull. Chem. Soc. Jpn. 1978, 51, 1577.
9. Okawa K., Nakajima K.: Biopolymers 1981, 20, 1811.
